

WJEC England Biology GCSE 2.1 - Transport in cells

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Define diffusion

Define diffusion

The net movement of molecules from an area of high concentration to an area of low concentration down their concentration gradient

How does temperature affect the rate of diffusion?

How does temperature affect the rate of diffusion?

As the temperature increases, so does the rate of diffusion as the particles have more kinetic energy and move faster

How does the concentration gradient affect the rate of diffusion?

How does the concentration gradient affect the rate of diffusion?

The greater the concentration gradient (the difference between the two areas), the faster the rate of diffusion

How does the surface area of the membrane affect the rate of diffusion?

How does the surface area of the membrane affect the rate of diffusion?

As the surface area increases so does the rate of diffusion as there is more space for the particles to move through

Define osmosis

Define osmosis

The net movement of water molecules from a high water potential to a low water potential down their water potential gradient across a partially permeable membrane

Define active transport

Define active transport

The movement of molecules from a low concentration to a high concentration against their concentration gradient using energy

Why do large multicellular organisms need transport systems?

Why do large multicellular organisms need transport systems?

They have a small surface area to volume ratio and so the rate of diffusion alone would not be fast enough to transport substances around

Give 4 examples of substances transported within organisms

Give 4 examples of substances transported within organisms

- O₂ is transported in for respiration
- CO₂ is transported out from respiration
- Dissolved food molecules from digestion
- Urea and waste products

